【물리화학1】 5-1 혼합물에 대한 열역학
·
공부/【물리화학1】
0. 이전 이야기  4장에서는 순수한 물질의 상평형 그림에 대하여 학습하였고, 화학 퍼텐셜을 이용해 상평형 그림을 설명함하지만 일상에서 더 유용한 부분은 혼합물에 대한 열역학으로 5장에서는 이에대해 배울 것임 https://nate0707.tistory.com/82?category=1449137 【물리화학1】 4장 순수한 물질의 물리적 변환0. 이전 이야기 1장 기체의 성질에서는 이상기체와 실제기체의 움직임에 대하여 배움2장에서는 열역학 제 1법칙을 주제로 내부에너지와 엔탈피를 배웠으며 이들이 상태함수임을 활용해 완전 미nate0707.tistory.com 5장에서는 우선 서로 반응하지 않는 혼합물에 대하여 학습할 것이고, 주로 2성분 혼합물(두 개의 성분만의 혼합물)을 취급함$x_A+x_B=1$과 1장..
【물리화학1】 5장 단순 혼합물
·
공부/【물리화학1】
0. 이전 이야기 1장 기체의 성질에서는 이상기체와 실제기체의 움직임에 대하여 배움2장에서는 열역학 제 1법칙을 주제로 내부에너지와 엔탈피를 배웠으며 이들이 상태함수임을 활용해 완전 미분을 통해 다양한 일반식을 도출했음, 또한 다양한 상황에서의 변수의 변화 구했음3장에서는 이를 토대로 과정의 자발성에 주목함, 계와 주위 모두를 주목하는 엔트로피와 계만을 주목하는 Gibbs 에너지와 Helmholtz 에너지에 대해 배웠으며 열역학 1법칙과 2법칙을 결합하여 Maxwell 관계식을 구해 다양한 열역학적 문제를 해결함4장은 상의 변화에 대해 배웠음, 주어진 압력 하에서 한 물질이 그 물질에 고유한 온도에서 다른 상으로 자발적인 상 전이를 일으킴한 물질의 여러 상들이 안정하게, 즉 Gibbs 에너지가 가장 낮게..
【물리화학1】 4-2 상 전이의 열역학적 양상
·
공부/【물리화학1】
0. 이전 이야기이전 포스팅에서는 상 전이와 상 평형을 나타내는 상 평형 그림에 대해 포스팅 하였음상 전이는 균질한 물질이 어떤 온도나 압력에 의해 하나의 상에서 다른 상으로 급격하게 변화하는 현상을 말하는데, 이때 두 상은 평형을 이루며 이때의 온도는 주어진 압력 하에서 Gibbs 에너지가 최소로 되는 온도임*이때 두 상의 퍼텐셜에너지는 같음상 규칙은 물질의 자유도를 구하는 식으로 $F=C-P+2$이며 이때 F는 자유도, C는 성분의 수, P는 상의 수를 말함단일 성분 계라면 $C=1$이므로 $F=3-P$그리고 대표적인 이산화탄소, 물, 헬륨의 상 평형 그림에 대해 설명하였는데, 대부분의 물질은 고체-액체 경계의 기울기가 양수인 반면, 물의 경우 고체-액체 경계의 기울기가 음수임* 이는 수소결합에 의해..
【물리화학1】 4-1 순수한 물질의 상평형 그림
·
공부/【물리화학1】
물질이 일으킬 수 있는 가장 간결한 물리적 상태 변화는 바로 상평형 그림으로 설명할 수 있음이는 추후 5장 단순 혼합물의 기초가 됨 1. 상의 안정도 - 상의 수 물질의 상 = 화학적 조성+물리적 상태 균일상의 수는 P로 나타냄 - 상 전이 상 전이는 균질한 물질이 어떤 온도나 압력에 의해 하나의 상에서 다른 상으로 급격하게 변화하는 현상전이 온도 $T_{trs}$ = 두 상이 평형을 이루는 온도* 이때 두 상은 평형을 이루며 이때의 온도는 주어진 압력 하에서 Gibbs 에너지가 최소가 되는 온도임 # 상 전이를 확인하는 방법열법 분석과 시차 주사식 열 계량법은 전이가 일어나는 동안에는 시료에 열이 공급되거나 제거되는데도 온도가 변하지 않음을 이용X선 회절 또한 고체에서의 상 전이를 확인하기 간편한데, ..
【물리화학1】 4장 순수한 물질의 물리적 변환
·
공부/【물리화학1】
0. 이전 이야기 1장 기체의 성질에서는 이상기체와 실제기체의 움직임에 대하여 배움2장에서는 열역학 제 1법칙을 주제로 내부에너지와 엔탈피를 배웠으며 이들이 상태함수임을 활용해 완전 미분을 통해 다양한 일반식을 도출했음, 또한 다양한 상황에서의 변수의 변화 구했음3장에서는 이를 토대로 과정의 자발성에 주목함, 계와 주위 모두를 주목하는 엔트로피와 계만을 주목하는 Gibbs 에너지와 Helmholtz 에너지에 대해 배웠으며 열역학 1법칙과 2법칙을 결합하여 Maxwell 관계식을 구해 다양한 열역학적 문제를 해결함4장은 상의 변화에 대해 학습할 것임, 이때 순수한 물질의 상 변화는 가장 단순한 예로 이러한 과정이 일정 온도와 압력에서 일어나기 위해서는 Gibbs 에너지가 감소해야함 1. 순수한 물질의 상평..
【물리화학1】 3-4 1법칙과 2법칙의 결합
·
공부/【물리화학1】
0. 이전이야기 엔트로피를 이용하여 자발성을 따질 경우 계와 주위의 엔트로피를 모두 조사하여야 함따라서 이를 간편화하기 위해 계만을 조사해서 자발성을 따질 수 있는 Helmholtz 에너지와 Gibbs 에너지에 대해 이야기함이 두가지는 Clausius 부등식을 변형하여 생긴 식으로 특정 조건 하에서 과정이 자발성을 갖는 것을 보여줌* $dS-\frac{dU}{T}≥0$         Clausius 부등식A=U−TS">$A=U−TS$   Helmholtz 에너지의 정의G=H−TS">$G=H−TS$   Gibbs 에너지의 정의$dA_{T,V}≤0$ , $dG_{T,p}≤0$ 의 조건일 때 자발적임이러한 Helmholtz 에너지와 Gibbs 에너지의 변화량을 통해 각각 최대일과  비..
【물리화학1】 3-3 계를 주목할 때
·
공부/【물리화학1】
0. 이전이야기 이전 포스팅에서는 엔트로피의 측정에 대하여 다뤘음엔트로피를 측정할 때는 대기압에서의 측정을 가정하며 각 구간에서의 상전이 엔트로피를 고려해줘야함$S_m(T)=S_m(0)$ $+\int_0^{T_f} {\frac{C_{p,m}(s,T)}{T}dT}$ $+\frac{\Delta_{fus}H}{T_f}$ $+\int_{T_f}^{T_b} {\frac{C_{p,m}(l,T)}{T}dT}$ $+\frac{\Delta_{vap}H}{T_b}$  $+\int_{T_b}^{T} {\frac{C_{p,m}(g,T)}{T}dT}$ 이때 S(0) 값을 알아야 S(T) 값을 구할 수 있는데, Nernst의 열 정리에 의하면 T=0에서 완전한 결정 상태로 있는 원소의 엔트로피 값을 임의로 0으로 놓으면, 이러한..
【물리화학1】 3-2 엔트로피의 측정
·
공부/【물리화학1】
0. 이전 이야기 이전 포스팅에서는 엔트로피에 대해 다뤘음고립계의 전체에너지는 변화하지 않지만, 이는 언제나 에너지의 무작정한 꼴로의 분산이 수반됨고립계가 자발적 변화를 일으키면 그 과정에서의 엔트로피는 증가해야 함 $\Delta S_{tot}>0$ 엔트로피는 열역학적으로 정의되기도 하며 $dS=\frac{dq_{rev}}{T}$통계 역학적으로 정의되기도 함 $S=klnW$ 엔트로피의 주요 특징 중 하나는 이것이 상태함수라는 것임, 상태함수이기 위해서는 순환에 걸쳐 적분한 값이 0이어야함이를 증명하기위해 Carnot 순환을 이용함 Clausius 부등식을 통해 엔트로피를 정의할 수 도 있음 $dq_{rev}/T=dS이므로 dS≥dq/T$ 엔트로피 변화는 팽창, 상 전이, 가열, 복합과정 등에서 발생하며 ..
Dylan07
'공부/【물리화학1】' 카테고리의 글 목록 (2 Page)